
LL UL APPROVED FOR PUBC F -

DISTRIBUTION J.:'

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

DTIC
VLSI Memo No. 88-465 2 3 1988
August 1988 Do

0
(N

A MEMORY DESIGN FOR THE MESSAGE-DRIVEN PROCESSORI

Soha M. N. Hassoun

Abstract

The Message-Driven Processor (MDP) is a low-latency processing node for a scalable
fine-grain MIMD concurrent computer, the Jellybean Machine. Programs are executed
by passing messages through a low-latency network. Each MDP integrates a
processor, a memory, and a communication network. On top of this message-passing
model, the MDP supports a global virtual address space.

This thesis involves the design and implementation of a memory for the Message-Driven
Processor. The memory array can be accessed by index, by row, or as a set-associative
cache. Index operations are used to read and write memory. Row operations reduce
the latency in message-handling by providing special purpose buffers, Row Buffers that
access four words (a row) of memory simultaneously. Two Queue Row Buffers enable
buffering messages at two different priority levels as soon as they arrive from the
network. An Instruction Row Buffer acts as a small instruction cache. Set-associative
operations provide a translation mechanism to enable translating any object to its
associated item. MDP operating system routines use this cache to translate virtual
identifiers into global addresses.

The microarchitecture and the circuit design of the memory is developed. A test chip is
fabricated to verify the design. Evaluation of the row operations is presented.

88 1122 029

Microsysle-s Massachusetts Cambridge Telephone
Research Cente, Instiute Massachusetts (617) 253-8138
Rnom ;q-321 of Technology 02139

Ac~eS;3:i For

NTIS CRA&I
DTiC TA 3
Un.i:;o, . .d U

J : ' t...

13 y ,.. . , . l, _Iy ____ ~ t

Acknowledgements

Submitted to the Department of Electrical Engineering and Computer Science on May
13, 1988 in partial fulfillment of the requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science. This work was supported in part by the
Defense Advanced Research Projects Agency under contract nos. N00014-80-C-0622
and N00014-87-K-0825.

Author Information

Hassoun: Digital Equipment Corporation, Mail Stop HLO2-3/c12, 77 Reed Road,
Hudson, NY 01749-2809.

CopyrightV 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

(1 - .- = = - i i l i l l

A MEMORY DESIGN FOR THE
MESSAGE-DRIVEN PROCESSOR

by

Soha M.N. Hassoun

B.S.E.E., South Dakota State University
(1986)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE

DEGREE OF

MASTER OF SCIENCE

IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1988

@Soha M. N. Hassoun 1988

The author hereby grants to M.I.T. permission to reproduce and to dis-
tribute copies of this thesis document in whole or in part.

Signature of Author -
Department of Electrical Engineering and Computer Science

Certified by roe / ei William J. Dally

Assistant Prof r of Electria n ad Computer Science
Thesis Supervisor

Accepted by
Dr. Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

(-

A MEMORY DESIGN FOR THE
MESSAGE-DRIVEN PROCESSOR

by

Soha M.N. Hassoun

Submitted to the
Department of Electrical Engineering and Computer Science

on May 13, 1988 in partial fulfillment of
the requirements for the Degree of Bachelor of Science in

Electrical Engineering and Computer Science

Abstract

The Message-Driven Processor (MDP) is a low-latency processing node for a scalable fine-grain
MIMD concurrent computer, the Jellybean Machine. Programs are executed by passing messages
through a low-latency network. Each MDP integrates a processor, a memory, and a communication
network. On top of this message-passing model, the MDP supports a global virtual address space.

This thesis involves the design and implementation of a memory for the Message-Driven Processor.
The memory array can be accessed by index, by row, or as a set-associative cache. Index operations
are used to read and write memory. Row operations reduce the latency in message-handling by
providing special purpose buffers, Row Buffers that access four words (a row) of memory simul-
taneously. Two Queue Row Buffers enable buffering messages at two different priority levels as
soon as they arrive from the network. An Instruction Row Buffer acts as a small instruction cache.
Set-associative operations provide a translation mechanism to enable translating any object to its
associated item. MDP operating system routines use this cache to translate virtual identifiers into
global addresses.

The microarchitecture and the circuit design of the memory is developed. A test chip is fabricated
to verify the design. Evaluation of the row operations is presented.

Thesis Supervisor: William J. Daily
Title: Assistant Professor of Electrical Engineering and Computer Science

Keywords: DRAM, Cache, Row Buffers, Jellybean Machine.

Acknowledgements

I would like to thank my parents for their infinite supply of love, support and understanding. Thank
you for standing by me during the hard times. Words fall short describing my love, respect, and
gratitude.

Special thanks to my brother, Marwan, for his technical and nontechnical advice. Thank you for
making my world a happier place.

Thanks to every member of the teaching staff at South Dakota State University, specially Dean
Earnest Buckley, for their continuous support and encouragement to attend graduate school. Thank
you.

Mega-thanks to my thesis advisor, Bill Dally, for giving me a chance to work on his Jellybean
machine. His knowledge and ideas made this thesis possible. Thank you, Bill.

I would like to thank all the members of the CVA group for their support. Thank you Stuart Fiske
for helping me think out a lot of circuit details, your patience, and for being a great office-mate.
Thank you Andrew Chien for reading parts of my thesis and for the helpful comments during the
last year. Thank you Jerry Larivee for your help around the lab. Special thanks to you, Brian
Totty, for the time that you spent trying to make me understand "MDP stuff" and the constant
encouragement to finish my chip. Also thank you for you photographic expertise in taking the
pictures in Chapter 5 and the formatting of the quotes and the equations all over.

I would also like to thank Prof. John Wyatt, John Wade, Silvano Brewster for interesting informa-
tive discussions and for answering many of my questions.

To my parents, Marwan, and Marwa.

Contents

1 Introduction 6
1.1 Focus 7
1.2 Background: The MDP and the Jellybean Machine 8

1.2.1 Execution Model 8
1.2.2 Architecture 8
1.2.3 Performance 9

1.3 Literature Survey .. 10
1.3.1 The Evolution of Memories 10
1.3.2 Advances in Cache Organizations 12

1.4 Design Constraints 12
1.5 Summary 13

2 Memory System Microarchitecture 14
2.1 Functionality .. 15
2.2 Interface .. 15
2.3 Memory Unit Elements 19

2.3.1 Memory Controller 19
2.3.2 The Local Row Buffer 21
2.3.3 Memory Unit Registers 21
2.3.4 Comparator 21
2.3.5 The Address Decoders and the Column Selector 23
2.3.6 The Row Buffers 23

2.4 Summary 23

3 Memory Design 24
3.1 Timing .. 25
3.2 Circuits 25

3.2.1 The Memory Celi and Memory array 28
3.2.2 The Address Decoder29
3.2.3 The Sense Amplifier 29
3.2.4 Precharge Circuit 33
3.2.5 Power Dissipation 36

3.2.6 Comparator 36
3.2.7 Column Selection. 37
3.2.8 The Row Buffers 37

3.3 Layout 37
3.4 Summary 38

4 A Prototype Memory 40
4.1 Potential Problems. 40

4.1.1 Capacitive Coupling. 41
4.1.2 Soft Errors 43

4.2 Test Circuits 44
4.2.1 Voltage Comparators. 44
4.2.2 RAM Test Patterns 44
4.2.3 The Precharge Circuit 45

4.3 The Test Chip. 46
4.4 Testing the Prototype. 46
4.5 Summary. 0

5 Evaluation of Architectural Features 64
5.1 The Instruction Row Buffer. 54
5.2 The Queue Row Buffers 57
5.3 Summary. 59

6 Conclusion 60

A Register-Transfer Level Simulation of MU 62

B Timing Diagram and Schematics of The MDP Memory 66

C Electrical Parameters of a 2 pmn CMOS Proces 73

D Schematics for the Test Circuitry 76

2

List of Figures

1.1 Memory Cell Evolution 11

2.1 Interface between Memory Unit and other MDP Units 17
2.2 Timing of Memory Operations 18
2.3 Memory Unit Functional Block Diagram 20
2.4 The Compare Operation 22

3.1 Memory Timing 26
3.2 Memory Functional Block Diagram 27
3.3 Three Transistor Memory Cell 28
3.4 Address Decoding 30
3.5 Schematic of Row Decoder 31
3.6 The Sense Amplifier Circuit 32
3.7 Precharge Voltage, V,,e, vs. High Noise Margin, NM 33
3.8 The Precharge Clock Generation Circuit and W, waveform 34
3.9 Precharge Design Alternative Circuit 35
3.10 The Comparators .. 36
3.11 Layout of Four Neighboring RAM Cells 39

4.1 Parasitic Coupling 42
4.2 Three Phase Test Clock 46
4.3 The Memory Test Chip Picture 47
4.4 Test Chip Floor Plan 48
4.5 Test Chip Pinout .. 49
4.6 iot and Read Row Signal Waveforms 51
4.7 Wo and Write Row Signal Waveforms 52
4.8 Multiple-exposure of Write Row Signal with Different Vn 53

5.1 Some Block Sizes and Possible Alignments 56
5.2 Performance Gain of IRB vs. Basic Block Size 58

B.1 Memory Timing 68
B.2 A Slice in Figure 3.2 69
B.3 Column Select Circuitry 70

3

B.4 Schematics of Memory Control Signals... 7
B.5 ..and More Memory Control Signals. 72

D.1 Voltage Comparator 77
D.2 Pattern Generator 78
D.3 Pattern Generator Control Signals 79
DA4 Address Generator 80
D.5 Control Circuit for Address Generator. 81

4

46

List of Tables

B-1 Memory Timing Table................................... 67

5

Chapter 1

Introduction

I would have you imagine, then, that there ezists in the mind of man a block

of waz, which is of different sizes in different men; harder, moister, and having

more or less of purity in one than another, and in some an intermediate quality.

. . . Let us say that this tablet is the gift of Memory.

- PLATO, in Dialogues, Parmednides, p. 191

The Jellybean Machine is a fine-grain concurrent machine that supports an object-

oriented programming model. Programs compute in a message-passing style. Computing

nodes are configured in a 2-dimensional grid. Each single-chip node integrates a commu-

nication network, a processor, and a memory. A processor is either a symbolic processor

or an object expert that performs operations on certain types of objects. The Jellybean

Machine is currently being developed by the Concurrent VLSI Architecture (CVA) group

at MIT under the supervision of Professor William Dally.

The Message-Driven Processor (MDP) [D'87] is the symbolic processing node for the

Jellybean machine. The message-handling overhead on a node is reduced by providing

hardware support to buffer and execute messages and to switch context rapidly. Messages

are buffered in the on-chip memory as soon as they arrive from the network. They are exe-

cuted through direct interpretation instead of the fetch-decode-execute loop of conventional

6

CHAPTER 1. INTRODUCTION 7

processors. Fast context switching is supported by providing two sets of processor registers

and two message queues.

On top of this message-passing model, the MDP supports a global virtual address space.

The on-chip memory can be accessed as a set-associative cache to translate a virtual address

into its physical address.

1.1 Focus

This thesis focuses on the design of the memory for a prototype Message-Driven Processor.

Unlike conventional memory organizations that access separate Random Access Memories

(RAMs) and caches, the MDP uses one physical memory structure that can be accessed by

an index to read/write a single word, or as a set-associative cache to translate a key into

its associated value.

In addition, the MDP memory implements row operations to accomplish:

1. Buffering incoming messages from the network at two different priority levels to reduce

the total memory cycles needed to store messages in memory.

2. Providing fast access to the instruction stream by fetching 8 instructions from memory

at a time.

A test chip was fabricated to evaluate this design and the row operations preformance was

analyzed.

CHAPTER 1. INTRODUCTION 8

1.2 Background: The MDP and the Jellybean Machine

1.2.1 Execution Model

The Message-Driven Processor transmits and executes messages at two priority levels. The

message header is the x and y-coordinates of the message's destination node. The on-chip

communication networks routes a message to it's final destination without disrupting the

processors. At it's final destination, the message header is stripped off and the message

is buffered in one of the queues in memory according to its priority level. The queues are

circular FIFO buffers that hold the messages to be executed. The processor executes the

message at the head of the higher priority non-empty queue. If both queues are empty the

processor 's in an idle state.

Messages consist of the message opcode followed by the message's arguments. Message

opcodes are physical addresses of routines that support the object-oriented programming

model, code execution, storage allocation, and various other utilities. Frequently used

routines reside in the on-chip ROM. Once the appropriate routine is executed, a message is

dequeue t from memory and the processor executes another message.

A translation look-aside buffer (TLB) is used to lookup any type of data asociated

with a certain key. The message routines use this TLB to translate an object's global

identifier (ID) into its physical address and to lookup the method that is associated with a

class/selector pair.

1.2.2 Architecture

The MDP consists of the Address Arithmetic Unit (AAU), the Register Arithmetic and

Logical Unit (RALU), the Control Unit (CU), and the Memory Unit (MU). These units

are connected through buses and some global signals. Each processor is connected to other

processors through a low-latency network [DS87].

CHAPTER 1. INTRODUCTION 9

The AAU calculates an address to access the memory. It performs several functions to

support enqueueing, dequeueing and dispatching messages that arrive from the network. It

also supervises the instruction pointer, the stack pointer, and some status bits. The RALU

contains the register file and the hardware to perform logical and arithmetic operations on

data stored in the registers. It checks the type and range of arithmetic operations. The

CU fetches instructions from the instruction cache. It decodes and pipelines the instruction

stream into several commands and broadcasts them to the appropriate units. In addition,

it monitors and handles all the faults and traps generated by the other units.

The Memory Unit (MU), which is the focus of this thesis, provides storage for the

data and messages arriving from other processors. The unique organization of the memory

allows it to be accessed by index or as a set-associative cache. The Memory Unit supports

instruction fetching and message enqueueing by providing row operations that access four

words (a row in the memory array) simultaneously.

1.2.3 Performance

The MDP handles a message dispatch and switches context within 5 ps. This low latency

in message handling allows concurrent algorithms to be supported at their natural grain

size of about 20 instructios.[Dal

The prototype MDP will perform at 4 MIPS with a 36K-bit memory. The MDP will be

fabricated using a 2 pm standard MOSIS process. The prototype Jellybean Machine will

consist of 4K nodes, with 2K Message-Driven Processors and 2K numerical object experts

(Reconfigurable Arithmetic Processor) (FDJ. This machine will achieve 2G PTPS (pointer

traversals per second) and 2G FLOPS (floating point operations per second)[DL87]

An industrial version of the MDP will have a memory capacity of 4K words. A full scale

Jellybean machine will consist of 64K nodes, and its performance will scale accordingly.

CHAPTER 1. INTRODUCTION 10

1.3 Literature Survey

1.3.1 The Evolution of Memories

In the past 40 years, computers have used a variety of memories such as delay lines, magnetic

drums, cathode-ray-tube storage, magnetic cores, magnetic film memories, semiconductor

memories, charge-coupled devices and magnetic bubbles. The driving force behind this

development is the need for increased density and speed and minimum power consumption.

For example, in the last 25 years at IBM, memory density has increased 280,000 times,

speed has improved 10-100 times, and power consumption per bit has decreased 20,000

times (P*811.

Semiconductor memories include Random Access memories (RAM) and read only mem-

ory (ROM). Random Access Memory implies that each location can be read or written with

equal access time. In ROMs, binary information is easily read out but is written either per-

manently at fabrication time or electrically by the user.

The first commercial semiconductor memory was used in the IBM System/360 Model 85.

In MOSFET memories, each bit is stored on a capacitance. Early memory cells were static

made of a set of cross-coupled inverters to store the information and pas gates to access

it. To reduce the CMOS cell size and dynamic power dissipation, the p-channel transistors

were eliminated producing the four-transistor cell. The three-transistor cell eliminated the

feedback loop within the cell and stored charge on a capacitance. Single transistor DRAM

cells employ one transistor to access the storage capacitance. Figure 1.1 illustrates the

evolution of memory cells.

The first commercial MOS DRAM was Intel's 1103. It was 1K words by 1 bit array.

Processing technologies has allowed memory densities of IM bits and-mperimental 4M and

16M bits per chip. Scaling feature sizes to less than 1 &m and using additional layers of

polysilicon have reduced the size of the 1-transistor DRAM cell. Minimum DRAM cell sizes

(are achieved through Surrounding Hi-Capacitance cell structures, in which the side-walls

CHAPTER 1. INTRODUCTION

Bit Bit sit Bit

Select row select row

6-Transistor 4-Transistor
SRAM1 Cell DRAM Cell

Bit

Write Port Read Part

Read Row0

Write Row Select stow

[T

3-Transistor 1-Transistor
Dual Port Dynamic Dynamic Cell

SFiurCell M11: Meory Cel Evolutio

Bit

CHAPTER 1. INTRODUCTION 12

capacitance of the trench form the storage capacitor. Matsushita Semiconductor Research

Center, Osaka, Japan, reported a cell size of 1.5pm by 2.2Mam, and a trench depth of 2.5pm

using a 0.5Mm N-well CMOS process [188]. The decrease in cell size has caused an increase

in the soft error rate, the inter-bit line and bit line/word line coupling noise. Layout was

strained by cell/sense amplifier pitch matching. Several memory array organizations such

as folding and twisting the bit lines and dividing the array into several independent blocks

have reduced these problems.

1.3.2 Advances in Cache Organizations

Besides technology advances, new memory organizations made memory access faster. "Look-

aside buffers", fast registers that stored recently accessed data, were first were first intro-

duced by Leon Bloom in 1962 [BCP62]. These fast local memories, or caches, were first

commercially introduced by IBM in their System/360 model 85. The cache size ranged

form 16 to 32 Kbytes. Also, some computer organizations provide two different caches, an

instruction cache and a data cache.

1.4 Design Constraints

The prototype MDP will be fabricated using a standard 2pm double-metal CMOS MOSIS

(MOS Implementation Service) process. The available technology and the size of available

chips (7900pm x 9200pm) constrained the memory's basic cell design and the size of the

memory array.

Our RAM design uses the 3-transistor memory cell. This cell occupies more area than a
I transistor DRAM cell with the same storage capacitance using the same process. However,

it is a more conservative design considering the variations within MOSIS processes. The

size of the memory array was constrained to 1K words (36 bits/word) to fit on chip along

with the rest of the MDP.(

CHAPTER 1. INTRODUCTION 13

1.5 Summary

This thesis reports the design of the Memory Unit for the Message-Driven Processor. It

includes the design of the memory and the fabrication of a test chip. It evaluates the

implementation of the queue row buffers, the instruction row buffers, and the hardware

support of the address translation mechanism.

Chapter 2 of this thesis is a description of the MDP's memory microarchitecture. In

chapter 3, 1 describe the hardware design of the memory system, and in chapter 4, 1 describe

the memory test chip. Chapter 5 is an evaluation of two architectural features of the MDP

memory: the queue buffers and the instruction buffer. Chapter 6 is a summary and some

suggestions to improve this memory design.

I

Chapter 2

Memory System
Microarchitect ure

'Tis in my memory locked,

And you yourself shall keep the key of it.

- SHAKESPEARE, in Hamlet, I, iii, 75

The MDP's Memory Unit (MU) provides storage for objects and messages. The memory

array can be accessed by index or as a set-associative cache. The Memory Unit's microar-

chitecture optimizes writing new messages into memory by using two row buffers, the Queue

Row Buffers (QRBs), to transfer a row (4 words) into memory simultaneously. Fetching in-

structions is optimized by fetching a row (8 instructions) from memory at once and storing

it in an Instruction Row Buffer (IRB).

This chapter describes the Memory Unit's functionality, its interface with the other

MDP units, and its internal elements.

(
14

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 15

2.1 Functionality

The Memory Unit executes the operation specified by the MDP's Control Unit. The read

and write decoded instructions load and store a data word from/to memory respectively.

Four other decoded instructions access the memory as a set assciative cache. The zate

instruction translates a key into its associated entry. If a cache miss occurs, a fault handler

is invoked. The probe instruction checks if a certain key is present in the cache and returns

a boolean value indicating if the key was found. The enter instruction writes a key and an

associated item into the cache and the purge instruction deletes them.

The Memory Unit performs row operations to increase the memory's bandwidth. The

Memory Unit fetches a row of the memory array and writes it into a special buffer, the

Instruction Row Buffer (IRB). This buffer acts as an instruction cache that holds the next

instructions to be executed. The MDP Control Unit initiates the fetching operation as

necessary. The Memory Unit enqueues messages arriving at the Network Unit by first

buffering them in one of the Queue Row Buffers (QRBs), and then writing that buffer into

memory. The QRBs are loaded into memory when they are full or if the last word of the

message has arrived from the Network Unit.

Frequent refreshing of the memory array is necessary to restore the charge in the memory

cells. The refresh operation has the highest priority, followed by writing the queues and

finally, the execution of one of the decoded memory instructions and the loading of the

IRBs.

2.2 Interface

The interface between the MU and other MDP units is necessary to specify the operation

to be performed, the information (data, instructions, or messages) to be accessed , and the

location in the memory array where information will be accessed. Global docks and signals

are used to synchronize this interface. (i.e. how, what, where, and when to access the

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 16

memory array.) The Memory Unit interacts with other MDP units as shown in Figure 2.1

The MDP Control Unit specifies a memory operation while decoding the instruction

stream. Operations are either word operations, associative operations or row operations.

Information used in memory operations is either data, instructions or messages. The

RALU transfers data between memory and one of its register through the data bus, the

C-bus, prior to or after performing an arithmetic operation on it. The CU executes one

of eight instruction in the Instruction Row Buffer at a time. The NU writes a word of a

message into one of a slot in the QRBs.

The AAU generates a word address when storing or loading a word, and a row address

when performing an associative operation or a row operation. Word addresses are generated

by adding an offset to a segLient base address stored in an AAU register. The AAU uses

a Translation Base/Mask register (TBM) to hash a key into a row address where the key's

associated items reside. It uses a Queue Mead and Length Register (QHL) to generate a

row address where the queue buffers are stored. A refresh counter in the AAU points to

the address of the next row to be refreshed.

The MDP uses a two phase nonoverlapping clock as shown in in the top of Figure 2.2.

Memory reads and writes are executed in one clock cycle. Since the AAU decodes and

drives the address to the Memory Unit, and since information is transferred between MDP

units in synchronization with the MDP's pipelined Control Unit, the execution of some de-

coded commands take several cycles. The memory executes the write, enter, purge decoded

commands and row operations in one cycle, the read decoded command in two cycles, and

the ziate and probe commands in 3 cycles. Figure 2.2 is a summary of the timing for each

operation providing no interrupts are generated during execution. In the figure, WData

refers to data to be written into the memory, RDoat refers to data to be read out of the

memory, and BData is a boolean value.

To insure nonconfficting operations and to regulate the interface of the memory with all

other MDP units, the MU asserts the following signals as necessary:

L

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 17

Address Unit
Memory (AAU)
Unit
(MU)

DAA

Fetced aoUnit

(CU)

Figure 2.1: Interface between Memory Unit and other MDP Units

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 18

cye31 Cyle2 Cydes3

902 9o1 90o91
Read Ade

Write (drs ~t

Xate

Probe_ _

Enter

Purge

Load woVT
IRB A

Write iw
QRB X -

Figure 2.2: Timing of Memory Operations

.. - - rm sm -ma a j

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 19

1. The Ready Signal: A global wait signal that stalls the execution of the pipelined

instruction stream. It is asserted when performing operations that require more than

one cycle or when a refresh request or/and a queue buffer write request takes priority

over the execution of the current memory command.

2. The MDR Valid Signal: A signal that indicates that data stored in the Memory Data

Register is valid and is transferred on the C-bus.

3. The Squish Signal: A global control signal that halts any action that might change

the state of the memory or processor.

4. The Memory Trap signal: This is generated in case of an unsuccessful zlate operation.

5. The Parity Trap signal: This signal is asserted in case of an uncorrectable parity error

in reading the memory.

2.3 Memory Unit Elements

The functional block diagram of the Memory Unit is shown in Figure 2.3 A register-transfer

level simulation of the Memory Unit was developed as part of the MDP. The following is a

brief description of all elements of the Memory Unit. Appendix A describes this simulation

in more detail.

2.3.1 Memory Controller

The local memory controller supervises all activities with other MDP units and within the

Memory Unit.

The Memory Controller receives commands from the MDP Control Unit. It arbitrates

between the decoded memory commands, the queue write requests, and the refresh requests

and sends the result of the arbitration to the AAU to generate the appropriate address. It

generates local memory commands to organize the data traffic between the C-bus, the

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 20

To Canugi

Lowaa fm ufft

F rm

0.-

Figure 2.3: Memory Unit Functional Block Diagram

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 21

registers, and the local buffers. It also asserts the global signals when appropriate and

organizes the enqueueing operation with the NU.

2.3.2 The Local Row Buffer

On one phase of the clock, a row of memory is loaded into the local row buffer. On the

other phase, the local row buffer is written into the same memory row. Data in the local

row buffer is written to the Memory Data Register and is used to perform the associative

lookup. To enter data into memory, the contents of the local row buffer are modified before

writing the local row buffer back into memory. Writing back the original contents of the

row constitutes a refresh operation.

2.3.3 Memory Unit Registers

The memory has two different registers that are used to load/store data from/to memory.

The Key Register holds the key to be translated The Memory Data Register holds the

word to be written into the memory array when accessing tLe memory by index and the

associated item when using the memory as a cache. It obtains data from the local row

buffer and enables it on the C-bus when doing a read or a successful xlate.

2.3.4 Comparator

The comparator compares the data in the Key Register with the even words in the local

row buffer when executing an associative command. Two HIT lines, which are active high,

reflect the result of tie_, comparison. If both HIT lines are discharged while executing an

associative operation, the MU asserts the Memory Trap signal. Figure 2.4 illustrates this

operation.

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 22

Key Register

WIT Line 0 CIT Line I

Even Word 0 Odd Word 0 Even Word 1 Odd Word 1

Figure 2.4: The Compare Operation

CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 23

2.3.5 The Address Decoders and the Colurin Selector

The address decoders and the column selector decode the 10-bit address from the AAU into

a memory location. The 8 higher bits of the address access one of the memory's 256 rows,
while the lower 2 bits select one word out of four in that row when doing a word operation.

2.3.6 The Row Buffers

Row buffers speed up the execution of the instruction stream by reducing the memory cycles

required to write the queues or to fetch the next instruction from memory. The two queue

buffers hold words of a message before writing them into memory. The instruction row

buffer fetches a row of the instructions in memory.

Analysis of the row buffers' performance is covered in Chapter 5.

2.4 Summary

At any point in time, the Memory Unit performs a word operation such as storing/loading a

word of data in memory, or a row operation such as loading instructions from memory into

the Instruction Row Buffer, writing the Queue Row Buffers, or refreshing a row in memory.

The MDP's Control Unit specifies the operation to be performed, and the AAU generates

the appropriate address. The Network Unit writes messages to the queue buffers and the

Control Unit executes the fetched instructions in the IRB. ADl the interface is synchronized

using global clocks and signals.

A register-transfer level simulation of the MDP has been developed by the CVA group

at MIT to verify the microarchitecture. Appendix A describes the logic equations that

describes a register transfer-level simulation of the MU.

Chapter 3

Memory Design

... . we hold the wax to the pereeptions and thoughts, and in that material

receive the impression of them as from the seal of a ring; and that we remember

and know what is imprinted as long as the image lasts...

- PLATO, in Dialogues, Parmednides, p. 191

The MDP memory is a 36K bit (36 bits/word) array. It Is arranged in 256 rows by

144 columns. Each memory cell is a 3-transistor DRAM cell. Bit lines are precharged high

before reading the memory cells. The higher order bits of the address select a row in the

memory array. The lower order bits of the address select a word in memory when reading or

writing a word in memory. Comparators in the peripheral circuitry compare the two even

words in a selected row against a key when performing a set-associative operation. The

result of this comparison specifies the word(s) in the selected row to be accessed. Three row

buffers, an Instruction Row Buffer and two Queue Row Buffers, enable simultaneous access

to four row-aligned words of memory. A sense amplifier speeds up sensing the discharging

of the bit lines when reading the memory. The memory was fabricated using a 2pm CMOS

double-metal layer process. It is designed to run at 15.5MHz.

This chapter describes the timing and the circuit design of the MDP memory. More

24

CHAPTER 3. MEMORY DESIGN 25

details are provided in Appendices B and C.

3.1 Timing

The timing diagram of the memory is shown in Figure 3.1. The memory executes a write-

precharge-read operation every clock cycle. The duration of p, is limited by the time to

perform a compare followed by a write operation. ift is limited by the time to perform the

precharge and the read operations.

The address is decoded by the falling edge of jpj. Precharging the bit lines and selecting

a row in the memory array occur simultaneously during i. The precharge clock is low

for 6.4 ns. The row read signal has a rise time of 5 us. The selected row is read from the

memory array by the falling edge of W2.

The row write signal is set high during the first 5 ns of the following V1. The result

of the compare operation is valid 12.Sns after the rising edge of jp. Column drivers write

data back into the selected row after the necessary modification during the remainder of W1.

A new address and operation are decoded while completing the write cycle of the previous

operation.

3.2 Circuits

Figure 3.2 is a functional block diagram of the memory's circuits. Appendix B contains

schematics illustrating a vertical slice through Figure 3.2 and the details of the control

circuitry. This section describes the circuit elements that determine the memory's perfor-
mance.

CHAPTER 3. MEMORY DESIGN 26

t 2 *26n

2n

Adres

Read
Raw
Signal

Valid2.4n
Road

output

Write
ROW
Signal

caffore, 2.5 no

Figure 3.1: Memory Timing

CHAPTER 3. MEMORY DESIGN 27

L Intruction Row Buffer

D
U
m
m
y

Row Memory Array B

Decode 1K Words t

L
i
n
S

Adtm Preldwpe Trenmletons

Column Drims and Se~ Ans me

c n . Ou6ue Row ifers ORB1 &

•.-a C rtOrS and Word Sefi Clronarc

Ion
cew VO DrI ws

TT DMt Bus

Figure 3.2: Memory Functional Block Diagram

CHAPTER 3. MEMORY DESIGN 28

Rst Paw ftnal

Figure 3.3: Three Transistor Memory Cell

3.2.1 The Memory Cell and Memory array

The memory array consists of 36K three-transistor memory cells. The 3-transistor memory

cell is shown in Figure 3.3. Binary information is stored as a charge on a capacitance, C..

This capacitance is formed from primarily the gate capacitance of transistor TI, and the

diffusion capacitance of the drain of T1 for a total of 37fF.

The row write signal is high during the write operation. Writing the cell is accomplished

by driving the data on the bit lines. The data is passed to the cell through T and stored

on C.. To read the cell, the bit line is precharged high and the row read signal is set high.

The bit line discharges through T3 and T2 only if a logic I is stored on C., the capacitance

of the bit line. The bit line discharges at a rate of 100 mV/ns.

The threshold voltage, Vk, of T, limits the stored voltage on C.. ViA is higher than the

CHAPTER 3. MEMORY DESIGN 29

threshold voltage of an n-channel transistor with a grounded source due to the back gate

(body) effect. An increased voltage difference between the source and substrate increases

the back gate factor. SPICE simulations using a back gate factor, -y , of 0.9 VI increase

Vth of TI to 2.1 Volts.

The memory cells require refreshing. The stored dynamic charge leaks off due to the

subthreshold leakage current of T1. The drain to source current, Id ,of T, displays an

exponential behavior when it is at cut off similar to a reverse biased p-n junction. Id,

increases with higher operating temperatures. The frequency of refreshing is a function of

the subthreshold current, the capacitances of the cell and the bit line, and the amount of

charge allowed to leak without losing the logic value stored in the cell. For example, SPICE

simulations allowing the storage voltage to leak to I Volt, and operating at 70 deg C requires

refreshing every 0.335ms.

3.2.2 The Address Decoder

The higher order eight bits of the address select a row in memory. Address decoding is

performed at two levels. First, each pair of address lines is decoded into one of four address

select lines (AS4-ASI9). At the second level, one of each four address select lines is input

to the row decoder. Figure 3.4 illustrates the two levels of address decoding.

A row decoder is a domino 4-input NAND gate. The row select signal is latched by

the falling edge of ft. The row write sional and the vow mead nal are driven across the

array in 4ns and Sa from the rising edges of V, and i2 respectively. Figure 3.5 is a circuit

schematic of the row decoder.

3.2.3 The Sense Amplifier

Sense amplifiers speed the detection of a change in voltage on a bit line when it is discharging.

The sense amplifier used in the MDP memory is a charge sharing amplifier [DG851. This

prx

CHAPTER 3. MEMORY DESIGN 30

B-
*0 m 0

1 M S

A3

Fiur 3.4[AdesAecoin

(2

CHAPTER 3. MEMORY DESIGN 31

2~Fgr 3.5: Scemti of2 Row Decoder ft pd#A

CHAPTER 3. MEMORY DESIGN 32

Vpre VDD

[
.1~--i- Lint lin.OvsTnweeCIiuij

Figure 3.6: The Sense Amplifier Circuit

circuit is illustrated in Figure 3.6. The bit line is precharged to V,,, a few hundred mV

above V,, 1 . The other side of the sense amplifier is precharged to VDD. T.. conducts

when the bit line voltage drops by the threshold voltage of T,,, below V,,1 . (i.e. VW,,d =

V, 1 - Vt). When T.,. is conducting, Cbtjj, appears large compared to C..... and V
quickly tracks Vb

The high noise margin of this sense amplifier, NM,, is equal to the difference between

the initial precharge voltage on the bit line, V,,., and the voltage at which T... starts
conducting, V,,-e •

Precharging the bit line to a voltage, Vpre, closer to V 0,j,,- reduces the noise margin,

NMh, but allows T. to conduct faster. This improves the speed at which &Vbit is sensed.

The graph in Figure 3.7 illustrates the trade off between the noise margin and the speed at

which T.,. conducting for two different values of V,,..

In addition to speeding the sense amplifier, precharging the bit lines to a lower voltage

CHAPTER 3. MEMORY DESIGN 33

Cn t rCnse2dconducus bcft Tsens e
4 -- Vsense2/N2<,M

Figuvreu.7:PehreotgV. 4 vs . HeighNieMriN

NM t co a f t m orscharging)

3.2. PrcI (discharging)I (d

Tsense2 Tsensel time(ns)
Conducts Conducts

Figure 3.7: Prechr geeraeate, V,,, vs. High Noise Margin, NMth

reduces power dissipation of the array by a factor proportional to V 2 .

The inverter connected to the sense amnplifier has a trip point equal to V.,,W, . It also

corrects the logical value of the dta rea from the memory array before writing it back

into memory.

A sense amplifier for the MDP memory was designed with a noise margin of 500rnV.

Vi.,! is set to 3.5 Volts ad the bit lines are precharged to 3 volts. The readl operation is

performed in 9.25as.

3.2.4 Precharge Circuit

A dummy bit line is used to generate the precharge clock. Figure 3.8 illustrates the circuit

and the waveform of e.The dummy bit line is driven low during o,. ;r-, goes low with

CHAPTER 3. MEMORY DESIGN 34

DrIvers

8/

I ~ ~ ~ 2 Q____________________________

Figure 3.8: The Precharge Clock Generation Circuit and 01, waveform

CHAPTER 3. MEMORY DESIGN 35

F 3. ea e P

Vref V rso 2

4-1
2'

Figure 3.9: Precharge Design Alternative Circuit

the rising edge of W2. The bit lines are precharged to V, through 40prm wide p-channel

transistors. The effect of the rising dummy bit line is propagated to set Wp,,. high.

Design Alternative

The precha rge operation described above is completed in 18.4ns. Two thirds of the

precharge operation is the delay in distributing ,-,. to the precharge transistors. An alter-

native design is to use the p-channel of the column drivers as precharge transistors. This

circuit is shown in Figure 3.9. Optimizing the circuit and increasing the width of the p-

channel pull-up circuit from the original 16p m to 30pm, would allow charging the bit line in

7.5ns. The delay through the feedback path to turn the precharge off is Sna. This increases

the operating frequency to. 16.67MHz. Other advantages include the decrease in layout area

especially of the precharge transistor's drivers.

CHAPTER 3. MEMORY DESIGN 36

Bit 3/2 3/2 Bit Bit 3/2 3/2 ant 0 0 Bit i0 0 1 Q232 1 35 /12 3/ 35

Key /2 3/2 Key0 Key 3/2 3/2 Key 0 a Ke 5 3/2 3/2
0 1 1 5

Compare @000
/2 3/2 o o2

Figure 3.10: The Comparators

3.2.5 Power Dissipation

Precharging the bit lines dissipates most of the power necessary to operate the memory.

Charging a bit line to 3 Volts at 15.5MHz, dissipates 0.40mW/bit line. Worst case dynamic

power dissipation occurs when all the bit lines are precharged high for a total of 0.6 W.

3.2.6 Comparator

The comparator is used to compare the even words in the selected row with a key when

performing a set-associative operation. The circuit used is precharged XOR circuit shown

in Figure 3.10

Each bit in an even word has a bit comparator. The 36 bits in each even word share

the precharge transistor. The result of each word comparison, the hit line, is discharged if

CHAPTER 3. MEMORY DESIGN 37

any bit in the key mismatch the prospective bit in that word.

The worst time delay occurs when only one bit in the key mismatch$ the prospective

bit in an even word. In that case, the discharge time of the hit lines is 5.5ns.

3.2.7 Column Selection

While row selection generates the y-address of the memory array, column selection generates

the x-address. Column selection is a function of the two low order address bits, the hit lines,

and the operation being executed. Selecting a group of columns specifies a word, a pair of

words, or a row to be operated on. The column circuitry in the memory is presented in

detail in Appendix B.

3.2.8 The Row Buffers

Each row buffer consist of 144-cell register. The Instruction Row Buffer (IRB) is placed at

the top of the memory array to facilitate its access. A replica of the sense amplifier and

a clocked inverter, is used to read the data into the IRB. Data routed to the Queue Row

Buffers (QRB) are multiplexed on a 36-bit data bus. The data in the buffer is driven on

the bit lines through clocked inverters.

3.3 Layout

The memory cells are arranged in 256 rows and 144 columns. The memory array and its

peripheral circuitry occupy 16.5 MA2 and 7.2 MA2. A p+ guard ring surrounds the array to

reduce the injection of minority carriers into the P-well.

Bit lines and ground lines run vertically in parallel in the first metal layer. Row read

lines and row write lines are routed horizontally in polysilicon. They are strapped to the

second metal layer to reduce their resistance.

CHAPTER 3. MEMORY DESIGN 38

To reduce the area of each cell, horizontally adjacent cells share the contact to the

ground line. Vertically adjacent cells share the contact to the bit line. Fig 3.11 illustrates

the layout of a 4 adjacent cells. To compact the layout of the peripheral circuitry, the bit

lines are interleaved so that bit, of each word in the row ae grouped together.

The layout of the peripheral circuitry was challenging. To maximize the density of the

layout, the circuitry for address decoding and row signals had to pitch match vertically with

the memory cells. The column selection circuitry had to pitch match with the horizontal

pitch of the memory cell.

3.4 Summary

This chapter covers the design of prototype MDP memory. The memory is 256 rows by

144 columns. Each memory cell is a 3-transistor DRAM cell. Peripheral circuitry allow

accessing the memory by index or as a set associative cache. The memory cycle is 64 ns.

The logic design was checked using a logic simulator, RNL. Timing was verified through

the circuit simulator, SPICE. This memory design reports typical speeds that were achieved

by averaging the results of simulations using the fast/fast and slow/slow process corners.

The slow/slow process corner performs at half the speed of the fast/fast process corner.

Layout was done through the layout editor Magic. The 2pm CMOS process electrical

parameters used in SPICE simulations are listed in Appendix C. Schematics are found in

Appendix B.

CHAPTER 3. MEMfORY DESIGN 39

aead.

A~WWI

Figure 3.11aotoorNegbrn A el

........-----------

Chapter 4

A Prototype Memory

In plucking the fruit of memory, one runs the risk of spo l ng its bloom.

JOSEPII CONRAD, in The Arrow of Gold, 1919, Author's Note

A prototype memory chip was fabricated to evaluate the design presented in Chapter

3. To function correctly, every memory cell should be able to store a binary value. The

decoder circuit should access every memory cell when correctly addressed. Storage nodes

should hold charge until the next refreshing cycle.

This chapter describes potential problems in the prototype memory and the implemen-

tation of on-chip test circuitry. The last section includes the results of testing the prototype

memory.

4.1 Potential Problems

This section describes some potential problems with RAM structures. Other problems

include faulty address -decoding and column selection that prohibit accessing the desired

data.

(
40

CHAPTER 4. A PROTOTYPE MEMORY 41

4.1.1 Capacitive Coupling

Capacitive coupling in the memory array could cause altering of the stored data or increasing

the need for a refresh cycle. Capacitive coupling includes:

1. Parasitic Coupling.

The small cell area increases the effects of parasitic coupling. For example, when

reading a memory cell, the read transistor, T3 in Figure 4.1, is conducting and the

bit line is precharged to V,.. Charge is shared between Cbit1j. and the capacitances

of the source of T3, C.3, and the drain of T, Csd. The gate capacitance of T2, C0*2 ,

has a lower value when it is non-conducting due to the decreased number of inversion

layer electrons. The coupling between drain of T2 and its gate could yank this voltage

high enough to turn on T2. The sense amplifier would sense the small discharge in

the bit lines and read the data as a high. To minimize this parasitic coupling, the

perimeter of C,d2 was minimized in the layout.

2. Inter-bit line Coupling:

Faulty reading or writing of memory cells could occur because of interaction between

cells that share signal lines or bit lines. Usually such interactions are caused by

repeated patterns.

For example, writing a 0 in a memory cell, and writing Is repeatedly in other cells

in the same column could cause an increase in the subthreshold current. Coupling

between a deselected row write signal and a high-driven bit line could yank the voltage

on the gate of T, of the memory cell. The increase in subthreshold leakage current

demands more frequent refreshing. If the yanked voltage reaches above the threshold

voltage of TI, data in a deselected row could be modified. The write row signals are

always driven (i.e. not floating) to minimize the effects of coupling.

CHAPTER 4. A PROTOTYPE MEMORY 42

Gk Lim

Wrke SoWe Line

%d2 K

Figure 4.1: Parasitic Coupling

(

CHAPTER 4. A PROTOTYPE MEMORY 43

4.1.2 Soft Errors

A soft error is the change in the stored data or logic value. Soft errors in VLSI structures

are mainly caused by alpha particles. Alpha particles are doubly ionized He atoms emitted

during the radioactive decay of uranium or thorium which is found in VLSI packaging

material. Soft errors are especially present in DRAM& because of the dynamic charge

stored in each cell and the high packing density of the DRAM structure.

As an alpha-particle hits an active device and travels through the material, electron-hole

pairs are generated. N-regions in the memory cell collect electrons. The major collection

mechanisms are drift and field-funneling (Bre88]. Drift is the movement of carriers due to

an electric field. Field-funneling is the modification of the electric field due to drift. The

soft error rate is a function of the collection efficiency and the memory cell's storage area.

If the charge collected exceeds the critical charge to store a logic 1, Vh, a soft error will
occur.

When an alpha particle hits the drain or gate of Ti, a track of electrons and holes is

generated. The electrons are carried into the drain by the horizontal electric field. They

neutralize the positive charges stored on the storage capacitance. If the electrons collected

by the drain of T, causes the stored voltage to drop below the threshold voltage of T2, a

soft error will occur.

A typical alpha particle of 3.6MeV generates 1.4 x 106 electron-hole pairs. The critical

voltage that would cause a soft error is 2.0 volts. The critical charge is 0.462 x 10' holes.

An alpha particle hit on the drain or gate of T, would cause a soft error. Assuming an alpha

particle flux rate of 0.1 a / cm2.ii, and that on average half the alpha particle hits cause a

soft error, we expect an error rate of 5.4 x lOe - 3 errors/h. Error detection and correction

circuitry would eliminate those errors.

. m "-' ltmm .. ll - -

CHAPTER 4. A PROTOTYPE MEMORY 44

4.2 Test Circuits

The purpose of the on-chip test circuitry is to trace internal wave forms and to facilitate gen-

erating test vectors to test for problems explained in Section 4.1. All the circuit schematics

of the test circuitry are illustrated in Appendix D.

4.2.1 Voltage Comparators

Five clocked voltage comparators were placed on the memory test chip. The purpose of

the comparators is to provide an on-chip sampling scope to observe important internal

waveforms. Outputs of the voltage comparators were brought off-chip. The comparator

was designed to detect a difference of 110 mV between its input voltages. A bit line, the

dummy bit line, the precharge clock, the row signals were inputs to the comparators.

The advantage of using comparators is to obtain an accurate measure of the internal

wave forms. The capacitance seen by the comparator's output causes a delay in the result

of the comparison. It does not distort the original signal. Probing and routing the desired

signal to output pads distort the signals by loading them with undesired capacitances.

4.2.2 RAM Test Patterns

Goals of Test Patterns

We have chosen three different test patterns that check for different possible malfunctions

in the memory array. These patterns include a Checkerboard pattern, the Walking l's and

O's pattern, and a random pattern [BF76.

The checkerboard pattern tests for possible interaction between adjacent rows and

columns of the array. One logic value is written in all the even cells in a row, and the

complementary logic value is written in the odd cells. All memory locations are verified for

(

CHAPTER 4. A PROTOTYPE MEMORY 45

the proper value. This test is repeated for the two complementary patterns.

The Walking l's and O's pattern checks that every memory cell can be set to both

logic values without influencing any other adjacent cell. It also chocks for correct address

decoding. The test starts be setting every memory cell to 0. One memory cell is altered at

a time. After every alteration, the whole memory array is read. The test is repeated for

complementary logic values.

Although the two patterns above could be used to measure the memory refresh time, a

random pattern is implemented to measure this refresh time. A pseudo-random pattern is

written into memory. The memory is still for the expected refresh period. The memory is

read check for changed values.

Implementation of Test Patterns

An on-chip circuit was designed to generate the different test patterns and addresses at

which data is to be written. Data comparators are used to compare a certain test pattern

with data read form memory. An address register and comparator hold and compare a

certain address with the current address. The control pins for these circuits are routed to

input pins. The results of the address and data comparators are routed to output pins. An
tiff-chip ROM uses these pins to generate the correct test sequence. Off-chip sequencing

eases sequencing the test patterns and allows refreshing when needed.

4.2.3 The Precharge Circuit

In case of the failure of the self-timed precharge circuitry, an off-chip precharge dock was

provided. A select pin allows the bit lines to precharge using this off-chip clock or the

on-chip generated precharge dock. The precharge phase occurs before the read phase, IP2,

as shown in Figure 4.2.

CHAPTER 4. A PROTOTYPE MEMORY 46

'2

Figure 4.2: Three Phase Test Clock

4.3 The Test Chip

A prototype memory was fabricated using a 2p double-metal CMOS MOSIS process. It

was pack"ged in an 84 pin package. A picture of the chip and it's floor plan are shown in

Figures 4.3 and 4.4. A listing of the pinout is provided in Figure 4.5.

4.4 Testing the Prototype

A test fixture was built for the prototype memory chip. A Digital System Analyzer (DAS)

generated the clocks and the control signals and collected digital data. An oscilloscope was

used to observe output waveforms.

The bidirectional Data pins (pins 45-62, and pins 65-82) prohibited generating and

acquiring data using the DAS' pods. Therefore, the DAS data vectors were written through

buffers (6 RCA CD74HCT245Es) to the memory chip when writing data. Data was acquired

at the chip's data pins when reading data.

CHAPTER 4. A PROTOTYPE MEMORY 47

--- -- -- -

f f -L - -j

Fiur 4.3 Th1eoyTstCi itr

CHAPTER 4. A PROTOTYPE MEMORY 48

-x -x -x :11i2Ac

1. MesYWyiwruf -

2M. o cmm

/ ~ ~ 3 PA 06ft.____

_____4. Aimss Pro-

S. CCw'm Selsalon

7 6. TOO MdIU 3 ___

- _____ 7. Too Ps"p
-- Gg __

Figure 4.4: Test Chip Floor Plan

CHAPTER 4. A PROTOTYPE MEMORY 49

I Voag Comarwor Samp Co 43 S13
2 VDO 44 En 0Maa pa outs3 VDD 45 Data.363 46 Data.3S4 47 Deta.345 2 48 DOW=.3

$:X 40 0814.32

a051 Date.309 Son"e Amplfierx Reference Voltage S ~ e2
1 0 Substrate sa 52 Dats.28

11 Swltch-oNoff-chip precharge oDslL28
12 GNO 4 Dat.27
13 SwItch-on/off.cthip Adresa 55 Data.26

Generaon 5 Dats.25
*14 Reest Addres Counter. I Write Row Signal 57 DtL24

s15 Inroren Addrs Counter / Read Row Signal so 0at.22
* 16 Enable into Addee Register I it ne Data.21
0 17 Compare Addres / Dummy bit Une

18 Add.9 61 Drae.20
19 Add.$ 62 Dsts.19
20 Add.7 63 GND
21 Add.$ 64 VDD
22 Add.5 65 Dats.18
23 Add.4 66 Da7.1
24 Add.3 67 Data.16
25 Add.2 68 Data.15
26 Add. so Dals.14
27 Add.0 70 Date.13
28 Result of Address Compare 71 Dasta.12
29 Cout of Addrm Counter 72 Date.11
30 GNO 73 Dat.10
31 VDD 74 Data.
32 SeLA 75 DML8
33 8a9 76 Dot.7
34 sOLIc 77 DsIt6

035 Rest tet Paftrn / PrechwOge Clock 78 DMe.6

36 SNft LSR HRO 79 Data.4
37 SW RPG I 0 DMa.3
36 Reeut of Deta Compare 81 Dota2
39 Countof LSR 82 Dat1
40 me random 83 OND
41 SelI 64 Refenc Voltage for
42 SeL2 Voage Compaao

* (Outputs of voltage com rwhI) Figure 4.5: Test Chip Pinout

I

CHAPTER 4. A PROTOTYPE MEMORY 50

Testing the chip was partially successful. The waveorms of the read row signal and the

write row signal were observed through the voltage comparator's outputs. Figure 4.6 has

pictures of V2, and the read row signal when it is at I and 4 Volts. Figure 4.7 is a picture of

i, and the write row signal when it is at I and 4 Volts. The measured delay between the

row signals and the clock edges (29.62 ns and 31.60 ns) were slower than SPICE simulation

results. This is mainly due to the differences in Tox, the oxide thickness, between the

SPICE deck used for simulation (Tox ranged between 22.5 and 27.5 unm) and the MOSIS

parametric test results (Tox is 40.6 nm). Figure 4.8 has multiple-exposures of the read

row signal with V, of the voltage comparator set at different voltages. From measurements

and from these photgrahps it is evident that the row signals have a very short rise time.

The address and data comparators used in the test circuits operate correctly.

An unplugged P-Well in the column select control circuitry was fatal to writing and

reading data from the memory array. We were unable to observe the bit lines due to a

4A opening in the routing of the output of the bit line voltage comparator. In the test

circuitry, a design rule violation that was not detected by the layout design rule checker

caused a failure in the random pattern generator. A misconnection in the Walking '0 and

'1 generator produces a wrong pattern.

4.5 Summary

This chapter describes potential problems in the memory due to coupling capacitances

and soft errors. Voltage comparators and pattern generators and comparators were placed

on-chip to test for errors. A prototype memory was fabricated and tested. An error (an

unplugged P-Well) in the control circuitry prevented accessing the memory array. The row

decoder and other parts of the test circuitry were functional. A corrected version of the

memory prototype will be sent for fabrication within the next two weeks.

CHAPTER 4. A PROTOTYPE MEMORY 51

Read Row Signal

v 4Volt, 0
m

Read Row Signal

Figure 4.6: cp and Read Row Signal Waveforms

CHAPTER 4. A PROTOTYPE MEMORY 52

V 1 Volt, 1

Write Row Signal

V -4Volt,
m

write Row signal

Figure 4.7: ip and Write Row Signal Waveforms

CHAPTER 4. A PROTOTYPE MEMORY 53

V -1,2,3,4 Volt,2

Read Row Signal

Vm - 3 3.25, 3.5,
3 .75, 4.0, 4.25, 4.5
4.75, 4.9 Volt,

Read Row Signal

Figure 4.8: Multiple-exposure of Write Row Signal with Different V.,

Chapter 5

Evaluation of Architectural
Features

Four for the price of one!

STORE ADVERTISEMENT

The MDP memory microarchitecture introduces a concept of row operation.. A row

(four words) of memory is fetched simultaneously through special row buffers. Row fetch-

ing requires only one memory reference. Fetching four words sequentially requires four

references.

Each buffer costs an area 0.7 MA2 the complexity of managing it. This chapter evaluates

the performance of the Instruction Row Buffer and the Queue Row Buffer.

5.1 The Instruction Row Buffer

A row of memory is loaded into the Instruction Row Buffer (IRB) while executing the in-

struction stream. This operation increases the memory bandwidth by making more memory

cycles available to the executing program.

54

CHAPTER 5. EVALUATION OF ARCHITECTURAL FEATURES 55

Two factors influence the performance of the IRB: the basic block size and it's alignment

in a memory row. A basic block is a section of contiguous code which does not branch when

executed. Both branching and short code require flushing the IRB frequently. Therefore,

better performance is achieved as the basic block size increases. The beginning of a block

is aligned in any slot in the row with equal probability. The effects of the alignment are

more noticeable for smaller block sizes.

The following equations are used to calculate the number of row fetches, RFetches.

BCA and WCA refer to best and worst case alignment respectively.

RFetChCCA ffi { + if w mod 4 = 0
f+1I otherwise

RFethe~sWCA RFetche$scA if (w - 1) mod 4 = 0
RFetchesBCA + I otherwise

The probability of worst and best case alignment is a function of the number of words

in a block.

P(BC) = (w - 3) mod 4
4

P(WC) = 1 - P(BC)

Figure 5.1 iliustrates the use of these equations for block sizes 5-8.

The gain in row fetching is the fraction of words that are fetched from the IRB without

memory access, i.e.

Cam=w - RFetches
Gn

CHAPTER 5. EVALUATION OF ARCHITECTURAL FEATURES 56

Block Sie a 5 91166 1000 1T10

No. Fetches - 2 MOOLem

No. Fe tcs" 2 P(SeUQM) a1

N eceBloi Size 06 ~ IIE~ ii
No. Fetches* 3

P(iM C4m) a 0.75 P(WOM Cae)= 025

No. Fetches 2PSe
No. Fetches - 2

SC

we

No. Fetch. 2 g Ce0

No. Fetci~j,, 3

P(Be Cas). 2 P(Wo C0.)-20.5

BC Best Cue

WC: WbMcue Figure 5.1: Some Block Sizes and Possible Alignments

CHAPTER 5. EVALUATION OF ARCHITECTURAL FEATURES 57

Gain.,,.,,e = P(BC) x GainBc + P(WC) x Gainwc

Figure 5.2 is a graph of the gain vs. different block sizes. From this graph, we can

conclude:

1. The maximum gain using row fetching is 75%. (i.e. Fetching every four words require

at least one memory reference.)

2. For average block sizes (5-10 words) , the minimum gain is 50%. The IRB eliminates

at least half the memory references.

5.2 The Queue Row Buffers

Messages arriving from the node's network are enqueued in one of the Queue Row Buffers

(QRB). The buffer is written into memory when it becomes full or when the network signals

an end of a message. Similar to the idea of the IE.B, the QRBs reduce the memory cycles

needed to enqueue a message.

The performance of the QRBs is a function of the number of words arriving from the

network per cycle. Once a message's first word arrive, it is very likely that the remainder

of the message follows at a rate of 1 word/ cycle. The bidirectional nature of the commu-

nication channels [DS87 could cause a slower arrival rate of 0.5 word/ cycle. Therefore,

decreasing memory accesses to write new messages permits the execution of more memory

instructions if contained in the executing program.

When the processor is idle, enqueueing a message via the QRBs delays execution by 4

cycles. Simulation results [Son88] indicate that the message arrival rate at a node is 0.0014

messages/ cycle in a 1-K node machine with a network capacity of 45%. i.e. A message (6

CHAPTER 5. EVALUATION OF ARCHITECTURAL FEATURES 58

~100.0

S. 90.0

7~ 0.0

Gain for Best Cas Alignment
40.0.. Gain for Worst Case Alignment

-Average Gain

30.0

0 5 10 15 20 25 30 35 40
BASIC Block Size

Figure 5.2: Perfoitmance Gain of IRB vs. Basic Block Size

CHAPTER 5. EVALUATION OF ARCHITECTURAL FEATURES 59

words) is expected to arrive at a node every 714 cycles. Since an average program's length

ranges from 10-20 instructions, it is likely that messages arrive at idle processors.

5.3 Summary

The purpose of row operatior is to reduce the number of memory cycles used to fetch

instructions and enqueue messages. The IRB effectively reduces the number of cycles needed

to fetch instructions. The QRBs improve performance when processors are in non-idle

states. Network analysis shows the likelihood of a processor being in an idle state when

a message arrives from the network. Optimization of message handling by direct word

enqueueing rather than the QRB's is recommended in this case.

Chapter 6

Conclusion

I'll note you in my book of memory.

- SHAKESPEARE, in Henry IV, Part II, iv, 101

This thesis reported the design and testing of the Memory Unit for the Message-Driven

Processor (MDP). The memory organization provides hardware support for both indexed

and set-associative access. Indexed access includes word access and row access. Row access

was developed to increase the memory's bandwidth when enqueueing messages from the

network or fetching instructions. The associative access provides an efficient method of

translating virtual addresses into physical addresses.

The memory operates at 15.5MHZ. It uses two nonoverlapping clocks. The precharge

clock is generated via self-timed precharge clock while decoding the memory address. A

sense amplifier allows reading the memory in 9.3 ns. Writing the memory occurs in 10 us.

Comparators in the peripheral circuitry implement the set-associative operations.

Testing of a prototype memory chip verified the functionality of the address decoder.

An error in the layout of the control circuitry (unplugged P-Well) prohibited routing data

to the memory. A corrected chip will be sent for fabrication.

60

CHAPTER 6. CONCLUSION 61

Possible Improvements

Several improvements of the memory design are possible. Circuit design improvements

include sharing the precharge transistor and the column driver circuitry (see Section 3.2.4)

allow an operating frequency of 16.67 MHz.

Improvements in the fabrication process could produce a faster and more compact mem-

ory. A buried contact in the RAM cell reduces the interconnect area, and accordingly, the

cell area. Reducing the process's features size while maintaining the storage capacitance

allows higher operating frequencies. Implementing error detection and correction circuit

combats parity and soft error problems.

Further Research

Areas that will be further be pursued include completely verifying the functionality

of the memory design and integrating the memory with the rest of the MDP Units on a

single-chip to produce a fast processing node for the Jellybean Machine.

An architectural idea that deserves further researching is the MDP cache. Several

parameters such as the cache size, associativity, TLB mapping algorithms, and replacement

algorithms influence the performance. Real evaluation of the cache should be based on

extensive trace-driven simulations with "real" workloads.

Appendix A

Register-Transfer Level
Simulation of MU

This appendix contains the logic equations that are used in the Memory Unit's register-

transfer level simulation. The equations refer to the Memory Unit Functional Block diagram

shown in Figure 2.3. They are organized in 4 groups to be synchronized with the MDP's

clock edges shown in Figure 2.2.

Phase 2, Falling Edge:

Cycle,, Cycle-, and Cycle 3 are generated to determine which cycle of the command is

being executed.

Cycle3 = Cycle2 . (XLATE + PROBE)

Cycle2 = Cycle, • (READ + XLATE + PROBE)

Cycle1 = Ready + 4 + C +

(Re-a y .(Ref resh.request + QRBOWRITE + QRB1.WRITE))

Phase 1, Rising Edge:

62

APPENDIX A. REGISTER- TRANSFER LEVEL SIMULATION OF MU 63

* Qrb1-request = QRBI-WRITE -Refresh-requst

* QrbO-requeet = QRBO-WRITE 37ef eshruest -4FRBTWT!TE

* Refresh-delay = Cycle1 - Ref resh-request

o Qrbl-empty = Cyclel -Qrb1..reqtucat

o If (Qrbl-empty) then Local..Row..Buffer = QRBI

o QrbO-empiy = Cyclel -QrbO-request

o If (QrbO..empty) then Local RowBuffer = QRBO

o If (Cyclei -(XLATE +PROBE +ENTER +PURGE)) then Key-.Regsiter C-bus

o If (Cycle2 -WRITE)then MDR = Local-Row-~Buffer[caddl

* If (CYCle 2 - READ - sq9uish)then Local..Aow..Bufferfc-add] = MDR

* HitO = Compare - (Local -Row-Buffe[even-wordO] = Key-.Register)

* Hitl = Compare - (Local.Row-.Bf fet~eveva-wordlJ = Key-RJegister)

* If (Compare XLATE -HitO) then MDR = LocaL-Row-uffer[odd-wuordO]

* If (Compare - XLATE -Hil) then MDR = Local-Row-.Buf fet~odd-wordl]

o MTtap = Compare - XLATE Hillt- .7HalO-

@ If (Compare -PROBE - (HitO + Hill) then MDR = true

o If (Compote - PROBE .7Hitl - HalO) then MDR = false

o If (Compate -ENTER - HalO) then Local-Row-.Buffer(odd-wtordO] = MDR

o If (Compare -ENTER.- Hitl) then Local-Row-.Buffer~odd-wordl) = MDR

APPENDIX A. REGISTER-TRANSFER LEVEL SIMULATION OF MU 64

* If (Compare. ENTER R. -N'O) then LocalRow-Bufferodd.word(random)I =

KeyRegsiter and Local-RowBu ffereven.word(random)] = MDR

@ If (Compare. PURGE. HitO) then Local.Row.Buffer[een.wordO] = nil

* If (Compare. PURGE. Hitl) then Local-Row.Buffer[eenwordli = nil

a Ready = (Cycle 1. (Refreehzrequest + Q RBO.WPJTE + QRB1.WRITE + READ +

XLATE + PROBE)) + (Cycle2 . (XLATE + PROBE))

* MDR-Valid = (Cycle2. squish . READ) + (Cycle3. a .quis (XLATE + PROBE).

(HitO + Hitl))

* Memory[R.add] = LocalJRowBuffer

Phase 1. Falling Edge:

" Row-add = (Memory.Address > 2)

" Column.add = Memory-Address < 0: 1 >

Phase 2, Rising Edge:

* LocalRowBuffer = Memory[Radd]

a HitO = I

* Hitl = 1

* MTrap = 0

* READY 1

* Local-Row.Buffer = Memory[Row.add

* Refresh-request = (refresh.counter = 16) + Refresh-delay)

APPENDIX A. REGISTER-TRANSFER LEVEL SIMULATION OF MU 65

* If (Refresh-Counter = 16) then Refreah.Counter = 0

" If (Ref resh.Counter 0 16) then Refreah.Counter = Refresh.Counter + 1

" If (Qrbinsert . Priority-1)) then QRB1[Qrbselect] = IN-Net

" If (Qrbinsert. Priority.O)) then QRBO[Qrb-aeleet] = IN-Net

" If (Cyclei • READ) then Local.Row.Buffer[Column-add = MDR

" If (Cycle1 (WRITE + ENTER)) then MDR = C.bus

* Compare = Cycle2 (XLATE + PROBE + ENTER + PURGE)

* If (Compare) then MDR = C.bus

" If (IRBLoad) then IRB = Local-Row.Buffer

Appendix B

Timing Diagram and Schematics
of The MDP Memory

The table on the following page identifies the symbols and values for that figure. A detailed

timing diagram of the memory array is shown in Figure B.1.

Figure B.2 is a slice through figure 3.2. Figure B.3 is the column select circuitry.

Figures B.4 and B.5 are the control signals used in the memory.

6

66

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MDP MEMORY 67

Symbol Definition (Delay (as)

t0,i phase 1 28.5
t, 2 phase 2 28.0
t.ah address hold time 6.7
tpal W;;.- turn-on time 6.0
tph WpT. hold time 6.4
tP.h W turn-off time 6.0
tr,, read row signal set-up time 5.0
t??h read row signal hold time 23.0
tw,, write row signal set-up time 5.0
th write row signal hold time 23.0
t". compare set-up time 4.5
tce compare evaluation 8.0
t" compare result valid time 18.0

t ,, associative column-selection set-up time 19.5
tecah associative column-selection hold time 9.0
t,.,, read column-selection set-up time 19.5
trcsh read column-selection hold time 9.0
two*, write column-selection set-up time 19.5
t,,sh write column-selection hold time 9.0

Table B.I: Memory Timing Table

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MD? MEMORY 68

1t 4.- - 20 ns

2 tah

Address 0o or 7valid

PalitP 1 ph

prer

Readrh

Row
Signal -/0

S i g n a lc ~ 2 0I
t o oC V

Compare

It.?dmI t esh j t

Co lumn

Select

Figure B.1: Memory Timing

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MDP MEMORY 69

2Lgm#

V.4V
Fiur B.:ASieinFgr .

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MDP MEMORY 70

-22

.02 Wed 0

PAM

AM-s"WOM 1 2 je
2

Plow
Ente -2 Soled

h1t.0

;r
Entw_2
knta
P4MWb IV

je' - -

Sol

'ar

AWpeled 2 X2

W

Je2 2

P p40rw

AW-sWed 3 je 2

,-2 PwW

Enter-2 sehod 3
FOB
h11 I

Erger-20
k"d"

Figure B.3: Column Select Circuitry

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MDP MEMORY 71

Reed .Reed..2 Vif WrIP-2

02 01 02 01

2 1 2 01 2 0
Purge Purge)2 Pfb Probe-3

XI~ ~ 01 PurglEns Probe 1) . ure. Entiz ror

Entere, 'Pi~

Ss._RX(f 1) SeLWE(()

E n fr .) 2 T Z ; 73

Figure B.4: Schematics of Memory Control Signals

APPENDIX B. TIMING DIAGRAM AND SCHEMATICS OF THE MDP MEMORY -2

Hit 1 j).~-SolD~S HuI ---- SsLXData.1
HILO HMO.- - .-

PurPurgs_.2
!no,.. SolPGDgaO 1411t.1ISlM s.

Hft0- Hit -4E)-

Random

Sol-EDatal1

Hit.0

HIt.ikins

Figure B.5: ..and More Memory Control Signals

Appendix C

Electrical Parameters of a 2 m

CMOS Process

* Slow Slow

.MqODEL NSS NMOS LEVEL*3 RSNUO TOX=2751-1O LD=.1E-6 XJm.14E-6

" CJ*1.6E-4 CJSWU1.6E-1O UOs550 VTOo.022 COSOI.3E-10

" CGDOo1.3E-1O ISUD.4EI5 N15.1110

" VRAX=12E4 PDu.7 133.5 KJSVu.3 THETAn.OG KAPPAu.4 LITAm.14

.MODEL PSS PROS LEVELu3 RSH=O T01.2751-10 LDU .31-6 Ii. .421-6

* CJ*7.?E-4 CJSV.5.4E-10 110.160 VTO-1.048 CGSO4E-I0
+ CGDO=4E-1O TPGu-1 NSUIuTE16 X175.110

+ VRAX=12E4 PB=.7 KJs. MJSV=.3 ETA=mOG THETA&.03 KAPPA.4

*deltaLpoly a - . l2Su deltaV a .9= (one aided inward)

* Fasnt p-type Slow n-type

-MODEL IFS IROS L1VELu3 RSHuO T01a2601-10 LDo. 1-6 13=.14E-6
" CJ*1.6E-4 CJS~n1.5E-10 110.550 VTO1.03 CGSO.33E-10

" CGDOi.33E-10 NSUD.4E15 THETA.06 KAPPA.4 STA.14

73

APPENDIX C. ELECTRICAL PARAMETERS OF A 2 pM CMOS PROCESS 74

*VKAXmI2E4 PB. KJo.5 KJSVU.3 NFSu1E1O

.MODEL PFS PROS LEVELm3 1311.0 T01u250E-1O LD&.4E-6 XJO.E-6

4 CJu7E-4 CJSHs4.5E-10 UO=220 VTOm-.66 CGSO5.5E-10

* CGDO-S.SE-10 TPGu-1 ISUI.5E15 ETA=.OG THETAm.03 KAPPA.4

+ VMAX17E4 PB. NRimS NJSW..3 NFSoIE10

*deltaLpoly a Own daltaWpm .7un deltafnm.Suu (one aided inward)

* Fast p-type Fat n-type

.MODEL NF? IMOS LEVELm3 1311.0 T01m225E-10 LDu.16E-6 13a.21E-6

" CJ=Z.OE-4 CJSV-1.25E-10 UOmGSO VTOm.628 CGSO=2.3E-1O

" CGDO=2.3E-10 #SUBm3EIS THETAm.06 KAPPA-.4 ETAU.14

+ YNAX=17E4 PB. MJm.5 RJSVu.3 IPSmIElO

.MODEL PFF PROS LEVELu3 1311.0 T01m226E-10 LDs.4E-6 XJ=.6E-6

" CJ=6E-4 CJSW3.7SE-10 UOm220 VTO.-.688 CGSOu6.2E-1O

" CGDO6.2E-1O TPGm-1 ISUB=SEIS ETAmOG6 TIIETAm.03 KAPPAu.4

" VNAXm17E4 P3u.7 NJ&. RJS~u.3 UPSmlElO

*deltaLpoly a .12Sum deltaW a .eim (one aided inward)

* Slow p-type Fat n-type

.MODEL IS? IROS LEVKLu3 1511.0 T01u250E- 10 LDu. 15E-6 KIm. 21E-6
+ CJm1.OK-4 CJSVS1.SE-10 UOn6SO, VTOm.626 CGSOu2K-10
* CGDO=2E-10 N5UBm3915 TI1=0A.06 KAPPAm.4 ETA=.14

+ VKAX=17E4 PBs. RJu.5 MJSVu.3 lISuIEIO

MRODEL PSF PROS LEYELu3 1511.0 TOX=2SOE-l0 LDu.3E-6 XJ*.42E-6
* CJm7E-4 CJSW=4.SE-10 U~uISO VTOm-1.049 CGSO04.2E-10

* CGDOn4.2E-10 TPG.-1 NSUBs7ElS EThrn.06 THETAm.03 EAPPAm.4

" VMAXm12E4 PD&.. MJ. NJSW&.3 NPSn1ElO

LC

APPENDIX C. ELECTRICAL PARAMETERS OF A 2 pM CMOS PROCESS 75

* de.taLpoly * Oum deltap S .8un deltaWn-.7um (one aided inward)

Appendix D

Schematics for the Test Circuitry

This appendix contains schematics of the on-chip test circuitry. Figure D.1 is the voltage

comparator.

Figure D.2 and Figure D.3 are a bit-slice of the pattern generator and its control circuitry.

It consists of a random pattern generator, RPG, a linear shift register , LSR, a constant

generator, a comparator and an output driver. The input to LSR's least significant bit is

high when Reset.pattern is high, low otherwise. The input to the RPG's least significant

bit is high when Reset-pattern is high. If the reset signal is low, the input is the exclusive-

or of 5 register bits which generates 234 different patterns. Signals SeLA, SelB, SeL.C,

Reset-Pattern, Shift.RPG, Shift.LSR, and Compare-Data are off-chip inputs. The result of

the data comparison is an off-chip output.

Figure D.4 and Figure D.5 are a bit-slice of the address generator and its control circuitry.

It consists of an incrementer, a register, and a comparator. Inputs Reset.AddressGenerator,

Enable.AddressRegister, Increment_-Add.Generator, and Compare-Address are off-chip sig-

nals. The carry out of the most significant address bit and the result of the address con-

parison are connected to the outside world.

76

APPENDLX D. SCHEMATICS FOR THE TEST CIRCUITRY 77

SamnpeClock N12II W 2tu

On Chip Signal w VW

Figure D. 1: Voltage Comparator

APPENDLX D. SCHEMATICS FOR THE TEST CIRCUITRY 78

c~pl) nflmGaertas

Cowe Data2

i;2t

Ca*wkdam9 (2)

Fiur D2:Paten enrao

APPENDIX D. SCHEMATICS FOR THE TEST CIRCUITRY 79

Re..? -Pam Rem-.Pasmidi)

ShifLRO Whf(RPQ 1)

ShiL-LSR

SOLA SOLA

SlLA J9

Sel B EnPsfmQnsmmrt&)

Figure D.3: Pattern Generator Control Signals

APPENDiX D. SCHEMATICS FOR THE TEST CIRCUITRY 80

En_.Add..Reg($2)

I n_nct_Ad_~V

CoPeO 062)

Figure D.4: Address Generator

APPENDIX D. SCHEMATICS FOR THE TEST CIRCUITRY 81

Rese
En-Add PA.Gen

Enable jdd_Reg Ejdy.(2

InarementAddGe

Figure D.5: Control Circuit for Address Generator

Bibliography

[BCP62] L. Bloom, M. Cohen, and S. Proter. Considerations in the Design of a Computer

with High Logic-to-Memory Speed Rates. Proceedings of Sessions on Gigacycle

Computing Systems, 53-63, January 1962.

[BF76] Melvin a. Breuer and Arthur D. Friedman. Diagnosis and Reliable Design of

Digital Systems, pages 139-160. Computer Science Press, Inc., 1976.

[Bre88] Silvano Brewster. Probabilistic Analysis of Soft Errors in VLSI Circuits. PhD

thesis, Massachusetts Institute Technology, June 1988.

(D*871 W. J. Daily et al. Architecture of a Message-Driven Processor. In Proceeding of

the 14th Annual Symposium of Computer Architecture, June 1987.

[Dal] W. J. Daily. The J-Machine. Darpa Report, 1987.

[DG85] Daniel W. Dobberpuhl and Lance A. Glasser. The Design and Analysis of VLSI

Circuits, pages 272-3. Addison-Wesley, 1985.

[DS87] W. J. Daily and Paul Y. Song. Design of a Self-Timed VLSI Multicomputer

Communication Controller. In Proceedings of the IEEE International Conference

on Computer Design: VLSI in Computers and Processors, pages 230-4, October

1987.

[FD] S. Fiske and W. 3. Dally. The Reconfigurable Arithmetic Processor. To be pre-

sented in the 15th Annual Symposium of Computer Architecture.

82

[1*88 Michihiro Inoue et aL. A 16Mb DRAM with kn Open Bit-Line Architecture. In

IEEE International Solid-State Circuits Conference, page 246, February 1988.

[MW79] Timothy C. May and Marray H. Woods. Alpha-Particle-Induced Soft Errors in

Dynamic Memories. In IEEE Transoctions on Electron Devices, pages 2-9, Jan

1979.

[P*81] E. W. Pugh et al. Solid State Memory Development in IBM. IBM Journal of

Research and Development, 25(5):585-602, September 1981.

[Son88] Paul Song. Design of A network for Concurrent Mesage Passing Systems. Mas-

ter's thesis, Massachusetts Institute Technology, May 1988.

[Zip84j Pichard Zippel. A Survey of Memory Design Techniques, Draft. 1984.

I

83

